KU LEUVEN

Labeled PSI from Homomorphic Encryption with Reduced Computation and Communication

ACM CCS 2021

Kelong Cong, imec-COSIC, KU Leuven Radames Cruz Moreno, Microsoft Research Mariana Botelho da Gama, imec-COSIC, KU Leuven Wei Dai, Microsoft Research Ilia Iliashenko, imec-COSIC, KU Leuven Kim Laine, Microsoft Research Michael Rosenberg, University of Maryland

Private Set Intersection

- Receiver learns $X \cap Y$.
- X and Y remain private.

Unbalanced PSI

• Unbalanced PSI - assume $|X| \gg |Y|$.

Private Contact Discovery Application

- X: registered phone numbers
- Y: contacts on the phone

Unbalanced PSI: Related Work

Unbalanced PSI: Related Work

Based on OPRF Kales et al. USENIX'19

- Sender distributes cuckoo filter created from X
- Communication is $\mathcal{O}(|X|)$
- Very efficient online phase

Unbalanced PSI: Related Work

Based on OPRF Kales et al. USENIX'19

- Sender distributes cuckoo filter created from X
- Communication is $\mathcal{O}(|X|)$
- Very efficient online phase

Based on HE Chen et al. CCS'18

- Intersection is computed by the sender
- Communication is $\mathcal{O}(|Y|\log|X|)$
- Computation is $\mathcal{O}(|X|)$
- Starting point of our work

(Somewhat) Homomorphic Encryption

Functionality of HE

- f(Ctxt(Y)) = Ctxt(f'(Y))
- f' is any arithmetic circuit of bounded depth, e.g., $+, -, \cdot$, Aut
- e.g., $f'(Y) = X \cap Y$, where X is hardwired

(Somewhat) Homomorphic Encryption

Functionality of HE

- f(Ctxt(Y)) = Ctxt(f'(Y))
- f' is any arithmetic circuit of bounded depth, e.g., $+, -, \cdot$, Aut
- e.g., $f'(Y) = X \cap Y$, where X is hardwired

Cost of HE

- Multiplication is the most expensive
- Need to minimize multiplicative width and depth
- Operations can be parallelized (more on this later)

Basic PSI Protocol Using HE

Inputs: Sender inputs set X, receiver inputs set Y, $|X| \gg |Y|$

Setup: Receiver generates a key pair for the HE scheme.

Set encryption: $[\![y_1]\!], ..., [\![y_{|Y|}]\!]$

Compute intersection: $[d_1]$, ..., $[d_{|Y|}]$

$$\llbracket d_i \rrbracket = r_i \prod_{x \in X} (\llbracket y_i \rrbracket - x)$$

Reply extraction: Receiver decrypts the ciphertexts and outputs

$$X \cap Y = \{y_i : \mathsf{HE.Decrypt}(\llbracket d_i \rrbracket) = 0\}$$

Basic PSI Protocol Using HE

Intersection polynomial

$$r \prod_{x \in X} ([\![y]\!] - x) = r[\![y]\!]^{|X|} + ra_{|X|}[\![y]\!]^{|X|-1} + \dots + ra_0$$

- ullet Multiplicative depth is $\mathcal{O}(\log |X|)$ from square and multiply
- Communication cost is $\mathcal{O}(|Y|)$ HE ciphertexts
- Computation cost is $\mathcal{O}(|X|\cdot |Y|)$ homomorphic operations

Previous Work

Windowing

- Instead of sending a single [y]
- Send powers of [y], e.g., $[y^{2^0}], [y^{2^1}], \dots, [y^{2^{\log |X|}}]$
- New multiplicative depth $\mathcal{O}(\log \log |X|)$
- Communication increased by a factor of $\mathcal{O}(\log |X|)$

Previous Work

Parallel computation

slot 3
$$\begin{bmatrix} x_2^{(0)} \\ x_3^{(1)} \end{bmatrix} \begin{bmatrix} x_4^{(1)} \\ x_4^{(0)} \end{bmatrix} \begin{bmatrix} x_4^{(0)} \\ x_4^{(0)} \end{bmatrix} \begin{bmatrix} x_3^{(0)} \\ x_3^{(0)} \end{bmatrix} \begin{bmatrix} x_4^{(0)} \\ x_3^{(0)} \end{bmatrix} \begin{bmatrix} x_4^{(0)} \\ x_3^{(0)} \end{bmatrix} \begin{bmatrix} x_4^{(0)} \\ x_2^{(0)} \end{bmatrix} \begin{bmatrix} x_2^{(1)} \\ x_1^{(1)} \end{bmatrix} \begin{bmatrix} x_2^{(1)} \\ x_4^{(1)} \end{bmatrix} \begin{bmatrix} x_2^{(1$$

- Use cuckoo hashing for Y
- Same for X but without eviction, hash x_i into $x_i^{(0)}$ and $x_i^{(1)}$
- Polynomials are evaluated in parallel!

Previous Work OPRF preprocessing

- No need padding or randomizing the intersection polynomial
- Security against malicious receiver

Our Improvements

Our Improvements

General optimizations

- Fast OPRF from FourQ (Costello and Longa 2015).
- Polynomial evaluation with Paterson-Stockmeyer algorithm.

Our Improvements

General optimizations

- Fast OPRF from FourQ (Costello and Longa 2015).
- Polynomial evaluation with Paterson-Stockmeyer algorithm.

Improved computation and communication

- Operations over prime fields.
- Extremal postage stamp bases.
- Implemented with SEAL.

Optimizing for communication complexity

- Operations over extension fields.
- Depth-free homomorphic Frobenius automorphisms.
- Implemented with HElib.

General optimizations Paterson-Stockmeyer algorithm

Compute the degree D intersection polynomial in $\mathcal{O}(\sqrt{D})$ ciphertext-ciphertext multiplications.

The sender computes two sets of powers:

- Low powers $[y]^2, [y]^3, \dots, [y]^{L-1}$
- High powers: $[y]^L, [y]^{2L}, [y]^{3L}, \dots, [y]^{(H-1) \cdot L}$

with $L, H \approx \sqrt{D}$.

General optimizations Paterson-Stockmeyer algorithm

Then, rewrite the intersection polynomial:

$$\sum_{i=0}^{D} a_{i} \cdot \llbracket y \rrbracket^{i}$$

$$\downarrow$$

$$\sum_{i=0}^{H-1} \llbracket y \rrbracket^{iL} \left(\sum_{j=0}^{L-1} \left(a_{iL+j} \cdot \llbracket y \rrbracket^{j} \right) \right)$$

General optimizations Paterson-Stockmeyer algorithm

Then, rewrite the intersection polynomial:

$$\sum_{i=0}^{D} a_{i} \cdot \llbracket y \rrbracket^{i}$$

$$\downarrow$$

$$\sum_{i=0}^{H-1} \llbracket y \rrbracket^{iL} \left(\sum_{j=0}^{L-1} \left(a_{iL+j} \cdot \llbracket y \rrbracket^{j} \right) \right)$$

• Non-scalar multiplicative complexity: $\mathcal{O}(\sqrt{D})$

How to minimize the number of powers sent without exceeding the target depth?

How to minimize the number of powers sent without exceeding the target depth?

Global postage-stamp problem

Given positive integers h and k, determine a set of k positive integers $A_k = \{a_1 = 1 < a_2 < \ldots < a_k\}$ such that all integers $1, 2, \ldots, n$ can be written as a sum of h or fewer of the a_j , and n is as large as possible.

The set A_k is called an extremal postage-stamp basis.

Computing powers of the query...

when using windowing

Computing powers of the query...

when using windowing

when using extremal postage stamp bases

Improved computation and communication Dealing with large items

Split items into multiple parts.

Improved computation and communication Dealing with large items

- Split items into multiple parts.
- Perform OPRF before splitting the items to protect from partial item leakage.

Improved computation and communication Results

X	Y	Protocol	Sender offline (s)	Sender online (s)
2 ²⁸	1024	This work (T=24)	3,680	7.80
		Chen et al. (T=32)	4,628	12.1
		LowMC-GC-PSI	1,869	0.93
		ECC-NR-PSI	52,332	1.34
2 ²⁰	5535	This work	28	3.23
		Chen et al.	43	4.23
		LowMC-GC-PSI	7.3	5.63
		ECC-NR-PSI	242	5.93

Improved computation and communication Results

X	Y	Protocol	Offline comm. and receiver storage (MB)	Comm. (MB)
2 ²⁸	1024	This work (T=24)	0	6.08
		Chen et al. (T=32)	0	18.57
		LowMC-GC-PSI	1,072	24.01
		ECC-NR-PSI	1,072	6.06
2 ²⁰	5535	This work	0	5.39
		Chen et al.	0	11.50
		LowMC-GC-PSI	4.2	129.73
		ECC-NR-PSI	4.2	32.71

- The Frobenius automorphism maps any $y \in \mathbb{F}_{t^d}$ to $\operatorname{Frob}(y,r) = y^{t^r}$.
- This operation introduces much less noise than homomorphic multiplication.
- We can get depth $\mathcal{O}(\log \log D)$ sending only $\mathcal{O}(1)$ pre-computed powers instead of $\mathcal{O}(\log D)$.

Example

Take a plaintext modulus t=2; the Frobenius operation can compute $[\![x]\!] \mapsto [\![x^{2^i}]\!]$.

Suppose the sender has 255 values in its set.

To use Paterson-Stockmeyer, the sender needs:

- Low powers $[y]^2, [y]^3, \dots, [y]^{15}$
- High powers: $[y]^{16}$, $[y]^{32}$, $[y]^{48}$, ..., $[y]^{240}$

Example

Take a plaintext modulus t=2; the Frobenius operation can compute $[\![x]\!] \mapsto [\![x^{2^i}]\!]$.

Suppose the sender has 255 values in its set.

To use Paterson-Stockmeyer, the sender needs:

- Low powers $[y]^2, [y]^3, \dots, [y]^{15}$
- High powers: $[y]^{16}$, $[y]^{32}$, $[y]^{48}$, ..., $[y]^{240}$

The receiver sends only [y]. The sender calculates:

• $[y], [y^2], [y^4], [y^8]$ with depth 0.

Example

Take a plaintext modulus t=2; the Frobenius operation can compute $[\![x]\!] \mapsto [\![x^{2^i}]\!]$.

Suppose the sender has 255 values in its set.

To use Paterson-Stockmeyer, the sender needs:

- Low powers $[y]^2, [y]^3, \dots, [y]^{15}$
- High powers: $[y]^{16}$, $[y]^{32}$, $[y]^{48}$, ..., $[y]^{240}$

The receiver sends only [y]. The sender calculates:

- $[y], [y^2], [y^4], [y^8]$ with depth 0.
- $[y^3] = [y] \cdot [y^2]$, $[y^5] = [y] \cdot [y^4]$, $[y^7] = [y] \cdot [y^2] \cdot [y^4]$, $[y^9] = [y] \cdot [y^8]$,

Example

Take a plaintext modulus t=2; the Frobenius operation can compute $[\![x]\!] \mapsto [\![x^{2^i}]\!]$.

Suppose the sender has 255 values in its set.

To use Paterson-Stockmeyer, the sender needs:

- Low powers $[y]^2, [y]^3, \dots, [y]^{15}$
- High powers: $[y]^{16}$, $[y]^{32}$, $[y]^{48}$, ..., $[y]^{240}$

The receiver sends only [y]. The sender calculates:

- $[y], [y^2], [y^4], [y^8]$ with depth 0.
- $[y^3] = [y] \cdot [y^2], [y^5] = [y] \cdot [y^4], [y^7] = [y] \cdot [y^2] \cdot [y^4], [y^9] = [y] \cdot [y^8],$
- $[y^{11}] = [y] \cdot [y^2] \cdot [y^8], [y^{13}] = [y] \cdot [y^4] \cdot [y^8], [y^{15}] = [y] \cdot [y^2] \cdot [y^4] \cdot [y^8]$

Optimizing for communication complexity Results

	Online communication (MB)			
Y	$ X =2^{20}$	2 ²²	2 ²⁴	2 ²⁶
1245	2.09	2.28	2.28	2.28
1024 (Chen et al.)	6.45	-	9.02	-
558	1.27	1.27	1.27	1.36
512 (Chen et al.)	5.01	-	10.64	-
341	1.10	1.32	1.32	1.32
256 (Chen et al.)	4.73	-	13.58	-
210	0.72	0.76	0.76	0.76
128 (Chen et al.)	4.69	-	18.32	-
126	0.63	0.63	0.66	-

Optimizing for communication complexity Results

X	Y	Offline (s)	Online (s)
^		T=24	T = 24
2 ²⁶	1245	296	889
2	210	1450	1640
2 ²⁴	1245	64.7	338
2	210	305	354
2 ²²	1245	14.1	140
	210	65.2	105
220	1245	2.88	43.4
	210	14.0	38.7

Conclusion

When intersecting 2²⁸ and 2048 item sets:

Reduced computation by 71%, communication by 63%.

When intersecting 2^{24} and 4096 item sets:

Reduced computation by 27%, communication by 63%.

PSI with **nearly constant communication** in the larger set size.

Optimizations also apply in the labeled mode.

Implementation available at:

https://github.com/microsoft/APSI/