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Private Set Intersection

X YX ∩ Y

ReceiverSender

• Receiver learns X ∩ Y .

• X and Y remain private.
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Unbalanced PSI

X YX ∩ Y

ReceiverSender

• Unbalanced PSI - assume |X | � |Y |.
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Private Contact Discovery Application

X YX ∩ Y

PhoneServer

• X : registered phone numbers

• Y : contacts on the phone
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Unbalanced PSI: Related Work

Based on OPRF
Kales et al. USENIX’19

• Sender distributes cuckoo
filter created from X

• Communication is O(|X |)

• Very efficient online phase

Based on HE
Chen et al. CCS’18

• Intersection is computed
by the sender

• Communication is
O(|Y | log |X |)

• Computation is O(|X |)

• Starting point of our work
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(Somewhat) Homomorphic Encryption

Functionality of HE

• f (Ctxt(Y )) = Ctxt(f ′(Y ))

• f ′ is any arithmetic circuit of bounded depth, e.g., +,−, ·,Aut

• e.g., f ′(Y ) = X ∩ Y , where X is hardwired

Cost of HE

• Multiplication is the most expensive

• Need to minimize multiplicative width and depth

• Operations can be parallelized (more on this later)
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Basic PSI Protocol Using HE

Inputs: Sender inputs set X , receiver inputs set Y , |X | � |Y |

Setup: Receiver generates a key pair for the HE scheme.

Set encryption: Jy1K, ..., Jy|Y |K

Compute intersection: Jd1K, ..., Jd|Y |K

JdiK = ri
∏

x∈X (JyiK− x)

Reply extraction: Receiver decrypts the ciphertexts and outputs

X ∩ Y = {yi : HE.Decrypt(JdiK) = 0}
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Basic PSI Protocol Using HE

• Intersection polynomial

r
∏
x∈X

(JyK− x) = rJyK|X | + ra|X |JyK|X |−1 + ... + ra0

• Multiplicative depth is O(log |X |) from square and multiply

• Communication cost is O(|Y |) HE ciphertexts

• Computation cost is O(|X | · |Y |) homomorphic operations
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Previous Work
Windowing

• Instead of sending a single JyK
• Send powers of JyK, e.g., Jy20K, Jy21K, . . . , Jy2log |X |K
• New multiplicative depth O(log log |X |)
• Communication increased by a factor of O(log |X |)

8



Previous Work
Parallel computation
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• Use cuckoo hashing for Y

• Same for X but without eviction, hash xi into x
(0)
i and x

(1)
i

• Polynomials are evaluated in parallel!
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Previous Work
OPRF preprocessing

OPRF
k y

PRFk (y)

• No need padding or randomizing the intersection polynomial

• Security against malicious receiver
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Our Improvements

General optimizations

• Fast OPRF from FourQ (Costello and Longa 2015).

• Polynomial evaluation with Paterson-Stockmeyer algorithm.

Improved computation and
communication

• Operations over prime fields.

• Extremal postage stamp
bases.

• Implemented with SEAL.

Optimizing for communication
complexity

• Operations over extension
fields.

• Depth-free homomorphic
Frobenius automorphisms.

• Implemented with HElib.
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General optimizations
Paterson-Stockmeyer algorithm

Compute the degree D intersection polynomial in O(
√
D)

ciphertext-ciphertext multiplications.

The sender computes two sets of powers:

• Low powers JyK2, JyK3, . . . , JyKL−1

• High powers: JyKL, JyK2L, JyK3L, . . . , JyK(H−1)·L

with L,H ≈
√
D.
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General optimizations
Paterson-Stockmeyer algorithm

Then, rewrite the intersection polynomial:

D∑
i=0

ai · JyKi

H−1∑
i=0

JyKiL

L−1∑
j=0

(
aiL+j · JyKj

)

• Non-scalar multiplicative complexity: O(
√
D)
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Improved computation and communication
Extremal postage stamp bases

How to minimize the number of powers sent
without exceeding the target depth?

Global postage-stamp problem

Given positive integers h and k , determine a set of k positive
integers Ak = {a1 = 1 < a2 < . . . < ak} such that all integers
1, 2, . . . , n can be written as a sum of h or fewer of the aj , and
n is as large as possible.
The set Ak is called an extremal postage-stamp basis.
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Improved computation and communication
Extremal postage stamp bases

Computing powers of the query...

• when using windowing

7

1

6

2 4

3 5 8

• when using extremal postage stamp bases

7

3 4

2

1

56 8
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Improved computation and communication
Dealing with large items

very large item some other item

very lar ge i tem some oth er i tem

• Split items into multiple parts.

• Perform OPRF before splitting the items to protect from
partial item leakage.
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Improved computation and communication
Results

|X | |Y | Protocol Sender offline (s) Sender online (s)

This work (T=24) 3,680 7.80

Chen et al. (T=32) 4,628 12.1

LowMC-GC-PSI 1,869 0.93
228 1024

ECC-NR-PSI 52,332 1.34

This work 28 3.23

Chen et al. 43 4.23

LowMC-GC-PSI 7.3 5.63
220 5535

ECC-NR-PSI 242 5.93
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Improved computation and communication
Results

Offline comm. and
|X | |Y | Protocol

receiver storage (MB)
Comm. (MB)

This work (T=24) 0 6.08

Chen et al. (T=32) 0 18.57

LowMC-GC-PSI 1,072 24.01
228 1024

ECC-NR-PSI 1,072 6.06

This work 0 5.39

Chen et al. 0 11.50

LowMC-GC-PSI 4.2 129.73
220 5535

ECC-NR-PSI 4.2 32.71
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Optimizing for communication complexity
Frobenius automorphism

• The Frobenius automorphism maps any y ∈ Ftd to
Frob(y , r) = y t

r
.

• This operation introduces much less noise than homomorphic
multiplication.

• We can get depth O(log logD) sending only O(1)
pre-computed powers instead of O(logD).
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Optimizing for communication complexity
Frobenius automorphism

Example

Take a plaintext modulus t = 2; the Frobenius operation can compute

JxK 7→ Jx2
i

K.
Suppose the sender has 255 values in its set.
To use Paterson-Stockmeyer, the sender needs:

• Low powers JyK2, JyK3, . . . , JyK15

• High powers: JyK16, JyK32, JyK48, . . . , JyK240

The receiver sends only JyK. The sender calculates:

• JyK, Jy2K, Jy4K, Jy8K with depth 0.

• Jy3K = JyK · Jy2K, Jy5K = JyK · Jy4K, Jy7K = JyK · Jy2K · Jy4K,
Jy9K = JyK · Jy8K,

• Jy11K = JyK · Jy2K · Jy8K, Jy13K = JyK · Jy4K · Jy8K,
Jy15K = JyK · Jy2K · Jy4K · Jy8K
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Optimizing for communication complexity
Results

Online communication (MB)

|Y | |X | = 220 222 224 226

1245 2.09 2.28 2.28 2.28

1024 (Chen et al.) 6.45 - 9.02 -

558 1.27 1.27 1.27 1.36

512 (Chen et al.) 5.01 - 10.64 -

341 1.10 1.32 1.32 1.32

256 (Chen et al.) 4.73 - 13.58 -

210 0.72 0.76 0.76 0.76

128 (Chen et al.) 4.69 - 18.32 -

126 0.63 0.63 0.66 -
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Optimizing for communication complexity
Results

Offline (s) Online (s)
|X | |Y |

T = 24 T = 24

1245 296 889
226

210 1450 1640

1245 64.7 338
224

210 305 354

1245 14.1 140
222

210 65.2 105

1245 2.88 43.4
220

210 14.0 38.7
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Conclusion

When intersecting 228 and 2048 item sets:

• Reduced computation by 71%, communication by 63%.

When intersecting 224 and 4096 item sets:

• Reduced computation by 27%, communication by 63%.

PSI with nearly constant communication in the larger set size.

ä Optimizations also apply in the labeled mode.

Implementation available at:
https://github.com/microsoft/APSI/
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