
Labeled PSI from Homomorphic
Encryption with Reduced
Computation and Communication

ACM CCS 2021

Kelong Cong, imec-COSIC, KU Leuven
Radames Cruz Moreno, Microsoft Research
Mariana Botelho da Gama, imec-COSIC, KU Leuven
Wei Dai, Microsoft Research
Ilia Iliashenko, imec-COSIC, KU Leuven
Kim Laine, Microsoft Research
Michael Rosenberg, University of Maryland

Private Set Intersection

X YX ∩ Y

ReceiverSender

• Receiver learns X ∩ Y .

• X and Y remain private.

1

Unbalanced PSI

X YX ∩ Y

ReceiverSender

• Unbalanced PSI - assume |X | � |Y |.

2

Private Contact Discovery Application

X YX ∩ Y

PhoneServer

• X : registered phone numbers

• Y : contacts on the phone

3

Unbalanced PSI: Related Work

Based on OPRF
Kales et al. USENIX’19

• Sender distributes cuckoo
filter created from X

• Communication is O(|X |)

• Very efficient online phase

Based on HE
Chen et al. CCS’18

• Intersection is computed
by the sender

• Communication is
O(|Y | log |X |)

• Computation is O(|X |)

• Starting point of our work

4

Unbalanced PSI: Related Work

Based on OPRF
Kales et al. USENIX’19

• Sender distributes cuckoo
filter created from X

• Communication is O(|X |)

• Very efficient online phase

Based on HE
Chen et al. CCS’18

• Intersection is computed
by the sender

• Communication is
O(|Y | log |X |)

• Computation is O(|X |)

• Starting point of our work

4

Unbalanced PSI: Related Work

Based on OPRF
Kales et al. USENIX’19

• Sender distributes cuckoo
filter created from X

• Communication is O(|X |)

• Very efficient online phase

Based on HE
Chen et al. CCS’18

• Intersection is computed
by the sender

• Communication is
O(|Y | log |X |)

• Computation is O(|X |)

• Starting point of our work

4

(Somewhat) Homomorphic Encryption

Functionality of HE

• f (Ctxt(Y)) = Ctxt(f ′(Y))

• f ′ is any arithmetic circuit of bounded depth, e.g., +,−, ·,Aut

• e.g., f ′(Y) = X ∩ Y , where X is hardwired

Cost of HE

• Multiplication is the most expensive

• Need to minimize multiplicative width and depth

• Operations can be parallelized (more on this later)

5

(Somewhat) Homomorphic Encryption

Functionality of HE

• f (Ctxt(Y)) = Ctxt(f ′(Y))

• f ′ is any arithmetic circuit of bounded depth, e.g., +,−, ·,Aut

• e.g., f ′(Y) = X ∩ Y , where X is hardwired

Cost of HE

• Multiplication is the most expensive

• Need to minimize multiplicative width and depth

• Operations can be parallelized (more on this later)

5

Basic PSI Protocol Using HE

Inputs: Sender inputs set X , receiver inputs set Y , |X | � |Y |

Setup: Receiver generates a key pair for the HE scheme.

Set encryption: Jy1K, ..., Jy|Y |K

Compute intersection: Jd1K, ..., Jd|Y |K

JdiK = ri
∏

x∈X (JyiK− x)

Reply extraction: Receiver decrypts the ciphertexts and outputs

X ∩ Y = {yi : HE.Decrypt(JdiK) = 0}

6

Basic PSI Protocol Using HE

• Intersection polynomial

r
∏
x∈X

(JyK− x) = rJyK|X | + ra|X |JyK|X |−1 + ... + ra0

• Multiplicative depth is O(log |X |) from square and multiply

• Communication cost is O(|Y |) HE ciphertexts

• Computation cost is O(|X | · |Y |) homomorphic operations

7

Previous Work
Windowing

• Instead of sending a single JyK
• Send powers of JyK, e.g., Jy20K, Jy21K, . . . , Jy2log |X |K
• New multiplicative depth O(log log |X |)
• Communication increased by a factor of O(log |X |)

8

Previous Work
Parallel computation

slot 0

slot 1

slot 2

slot 3

x
(0)
0

x
(0)
1

x
(1)
0

x
(0)
2

x
(1)
1

x
(1)
2

x
(0)
3

x
(1)
3

x
(1)
4

x
(0)
4

P0(x) = (x − x
(0)
0)(x − x

(1)
1)(x − x

(1)
4)

P1(x) = (x − x
(0)
1)(x − x

(1)
2)

P2(x) = (x − x
(1)
0)(x − x

(0)
3)

P3(x) = (x − x
(0)
2)(x − x

(1)
3)(x − x

(0)
4)

pt0 pt1 pt2

y2

y0

y1

ct0

• Use cuckoo hashing for Y

• Same for X but without eviction, hash xi into x
(0)
i and x

(1)
i

• Polynomials are evaluated in parallel!

9

Previous Work
OPRF preprocessing

OPRF
k y

PRFk (y)

• No need padding or randomizing the intersection polynomial

• Security against malicious receiver

10

Our Improvements

General optimizations

• Fast OPRF from FourQ (Costello and Longa 2015).

• Polynomial evaluation with Paterson-Stockmeyer algorithm.

Improved computation and
communication

• Operations over prime fields.

• Extremal postage stamp
bases.

• Implemented with SEAL.

Optimizing for communication
complexity

• Operations over extension
fields.

• Depth-free homomorphic
Frobenius automorphisms.

• Implemented with HElib.

11

Our Improvements

General optimizations

• Fast OPRF from FourQ (Costello and Longa 2015).

• Polynomial evaluation with Paterson-Stockmeyer algorithm.

Improved computation and
communication

• Operations over prime fields.

• Extremal postage stamp
bases.

• Implemented with SEAL.

Optimizing for communication
complexity

• Operations over extension
fields.

• Depth-free homomorphic
Frobenius automorphisms.

• Implemented with HElib.

11

Our Improvements

General optimizations

• Fast OPRF from FourQ (Costello and Longa 2015).

• Polynomial evaluation with Paterson-Stockmeyer algorithm.

Improved computation and
communication

• Operations over prime fields.

• Extremal postage stamp
bases.

• Implemented with SEAL.

Optimizing for communication
complexity

• Operations over extension
fields.

• Depth-free homomorphic
Frobenius automorphisms.

• Implemented with HElib.

11

General optimizations
Paterson-Stockmeyer algorithm

Compute the degree D intersection polynomial in O(
√
D)

ciphertext-ciphertext multiplications.

The sender computes two sets of powers:

• Low powers JyK2, JyK3, . . . , JyKL−1

• High powers: JyKL, JyK2L, JyK3L, . . . , JyK(H−1)·L

with L,H ≈
√
D.

12

General optimizations
Paterson-Stockmeyer algorithm

Then, rewrite the intersection polynomial:

D∑
i=0

ai · JyKi

H−1∑
i=0

JyKiL

L−1∑
j=0

(
aiL+j · JyKj

)

• Non-scalar multiplicative complexity: O(
√
D)

13

General optimizations
Paterson-Stockmeyer algorithm

Then, rewrite the intersection polynomial:

D∑
i=0

ai · JyKi

H−1∑
i=0

JyKiL

L−1∑
j=0

(
aiL+j · JyKj

)

• Non-scalar multiplicative complexity: O(
√
D)

13

Improved computation and communication
Extremal postage stamp bases

How to minimize the number of powers sent
without exceeding the target depth?

Global postage-stamp problem

Given positive integers h and k , determine a set of k positive
integers Ak = {a1 = 1 < a2 < . . . < ak} such that all integers
1, 2, . . . , n can be written as a sum of h or fewer of the aj , and
n is as large as possible.
The set Ak is called an extremal postage-stamp basis.

14

Improved computation and communication
Extremal postage stamp bases

How to minimize the number of powers sent
without exceeding the target depth?

Global postage-stamp problem

Given positive integers h and k , determine a set of k positive
integers Ak = {a1 = 1 < a2 < . . . < ak} such that all integers
1, 2, . . . , n can be written as a sum of h or fewer of the aj , and
n is as large as possible.
The set Ak is called an extremal postage-stamp basis.

14

Improved computation and communication
Extremal postage stamp bases

Computing powers of the query...

• when using windowing

7

1

6

2 4

3 5 8

• when using extremal postage stamp bases

7

3 4

2

1

56 8

15

Improved computation and communication
Extremal postage stamp bases

Computing powers of the query...

• when using windowing

7

1

6

2 4

3 5 8

• when using extremal postage stamp bases

7

3 4

2

1

56 8

15

Improved computation and communication
Dealing with large items

very large item some other item

very lar ge i tem some oth er i tem

• Split items into multiple parts.

• Perform OPRF before splitting the items to protect from
partial item leakage.

16

Improved computation and communication
Dealing with large items

very large item some other item

very lar ge i tem some oth er i tem

• Split items into multiple parts.

• Perform OPRF before splitting the items to protect from
partial item leakage.

16

Improved computation and communication
Results

|X | |Y | Protocol Sender offline (s) Sender online (s)

This work (T=24) 3,680 7.80

Chen et al. (T=32) 4,628 12.1

LowMC-GC-PSI 1,869 0.93
228 1024

ECC-NR-PSI 52,332 1.34

This work 28 3.23

Chen et al. 43 4.23

LowMC-GC-PSI 7.3 5.63
220 5535

ECC-NR-PSI 242 5.93

17

Improved computation and communication
Results

Offline comm. and
|X | |Y | Protocol

receiver storage (MB)
Comm. (MB)

This work (T=24) 0 6.08

Chen et al. (T=32) 0 18.57

LowMC-GC-PSI 1,072 24.01
228 1024

ECC-NR-PSI 1,072 6.06

This work 0 5.39

Chen et al. 0 11.50

LowMC-GC-PSI 4.2 129.73
220 5535

ECC-NR-PSI 4.2 32.71

18

Optimizing for communication complexity
Frobenius automorphism

• The Frobenius automorphism maps any y ∈ Ftd to
Frob(y , r) = y t

r
.

• This operation introduces much less noise than homomorphic
multiplication.

• We can get depth O(log logD) sending only O(1)
pre-computed powers instead of O(logD).

19

Optimizing for communication complexity
Frobenius automorphism

Example

Take a plaintext modulus t = 2; the Frobenius operation can compute

JxK 7→ Jx2
i

K.
Suppose the sender has 255 values in its set.
To use Paterson-Stockmeyer, the sender needs:

• Low powers JyK2, JyK3, . . . , JyK15

• High powers: JyK16, JyK32, JyK48, . . . , JyK240

The receiver sends only JyK. The sender calculates:

• JyK, Jy2K, Jy4K, Jy8K with depth 0.

• Jy3K = JyK · Jy2K, Jy5K = JyK · Jy4K, Jy7K = JyK · Jy2K · Jy4K,
Jy9K = JyK · Jy8K,

• Jy11K = JyK · Jy2K · Jy8K, Jy13K = JyK · Jy4K · Jy8K,
Jy15K = JyK · Jy2K · Jy4K · Jy8K

20

Optimizing for communication complexity
Frobenius automorphism

Example

Take a plaintext modulus t = 2; the Frobenius operation can compute

JxK 7→ Jx2
i

K.
Suppose the sender has 255 values in its set.
To use Paterson-Stockmeyer, the sender needs:

• Low powers JyK2, JyK3, . . . , JyK15

• High powers: JyK16, JyK32, JyK48, . . . , JyK240

The receiver sends only JyK. The sender calculates:

• JyK, Jy2K, Jy4K, Jy8K with depth 0.

• Jy3K = JyK · Jy2K, Jy5K = JyK · Jy4K, Jy7K = JyK · Jy2K · Jy4K,
Jy9K = JyK · Jy8K,

• Jy11K = JyK · Jy2K · Jy8K, Jy13K = JyK · Jy4K · Jy8K,
Jy15K = JyK · Jy2K · Jy4K · Jy8K

20

Optimizing for communication complexity
Frobenius automorphism

Example

Take a plaintext modulus t = 2; the Frobenius operation can compute

JxK 7→ Jx2
i

K.
Suppose the sender has 255 values in its set.
To use Paterson-Stockmeyer, the sender needs:

• Low powers JyK2, JyK3, . . . , JyK15

• High powers: JyK16, JyK32, JyK48, . . . , JyK240

The receiver sends only JyK. The sender calculates:

• JyK, Jy2K, Jy4K, Jy8K with depth 0.

• Jy3K = JyK · Jy2K, Jy5K = JyK · Jy4K, Jy7K = JyK · Jy2K · Jy4K,
Jy9K = JyK · Jy8K,

• Jy11K = JyK · Jy2K · Jy8K, Jy13K = JyK · Jy4K · Jy8K,
Jy15K = JyK · Jy2K · Jy4K · Jy8K

20

Optimizing for communication complexity
Frobenius automorphism

Example

Take a plaintext modulus t = 2; the Frobenius operation can compute

JxK 7→ Jx2
i

K.
Suppose the sender has 255 values in its set.
To use Paterson-Stockmeyer, the sender needs:

• Low powers JyK2, JyK3, . . . , JyK15

• High powers: JyK16, JyK32, JyK48, . . . , JyK240

The receiver sends only JyK. The sender calculates:

• JyK, Jy2K, Jy4K, Jy8K with depth 0.

• Jy3K = JyK · Jy2K, Jy5K = JyK · Jy4K, Jy7K = JyK · Jy2K · Jy4K,
Jy9K = JyK · Jy8K,

• Jy11K = JyK · Jy2K · Jy8K, Jy13K = JyK · Jy4K · Jy8K,
Jy15K = JyK · Jy2K · Jy4K · Jy8K

20

Optimizing for communication complexity
Results

Online communication (MB)

|Y | |X | = 220 222 224 226

1245 2.09 2.28 2.28 2.28

1024 (Chen et al.) 6.45 - 9.02 -

558 1.27 1.27 1.27 1.36

512 (Chen et al.) 5.01 - 10.64 -

341 1.10 1.32 1.32 1.32

256 (Chen et al.) 4.73 - 13.58 -

210 0.72 0.76 0.76 0.76

128 (Chen et al.) 4.69 - 18.32 -

126 0.63 0.63 0.66 -

21

Optimizing for communication complexity
Results

Offline (s) Online (s)
|X | |Y |

T = 24 T = 24

1245 296 889
226

210 1450 1640

1245 64.7 338
224

210 305 354

1245 14.1 140
222

210 65.2 105

1245 2.88 43.4
220

210 14.0 38.7

22

Conclusion

When intersecting 228 and 2048 item sets:

• Reduced computation by 71%, communication by 63%.

When intersecting 224 and 4096 item sets:

• Reduced computation by 27%, communication by 63%.

PSI with nearly constant communication in the larger set size.

ä Optimizations also apply in the labeled mode.

Implementation available at:
https://github.com/microsoft/APSI/

23

https://github.com/microsoft/APSI/

