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Somewhat Homomorphic Encryption (SHE)

SHE: Cryptographic technique which allows an

untrusted entity to perform a limited number of

computational steps on encrypted data
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SHE in practice

The Plaintext Space � Mathematical Formulation

Rt :=
Zt[X]

(X2k + 1)

t ≥ 2 is a `small' integer called the coe�cient modulus

X2k + 1 is called the polynomial modulus

This means polynomials of the form

a0 + a1X + a2X
2 + · · ·+ a2k−1X

2k−1

where 0 ≤ ai < t.

Problem

What is the best way to encode your data into the plaintext space?
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Base b encoding - part 1

For integer b, |b| > 1, and real θ we can approximate θ by

θ ≈ arbr + ar−1b
r−1 + · · ·+ a1b+ a0 + a−1b

−1 + a−2b
−2 + · · ·+ a−sb

−s

for some integer coe�cients ai and integers r and s.
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For integer b, |b| > 1, and real θ we can approximate θ by

θ ≈ arbr + ar−1b
r−1 + · · ·+ a1b+ a0 + a−1b

−1 + a−2b
−2 + · · ·+ a−sb

−s

for some integer coe�cients ai and integers r and s.

Decimal expansion: here b = 10, 0 ≤ ai ≤ 9, together with a sign

π ≈ 3.1415926535897932384626433832795 · · ·
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Base b encoding - part 1

For integer b, |b| > 1, and real θ we can approximate θ by

θ ≈ arbr + ar−1b
r−1 + · · ·+ a1b+ a0 + a−1b

−1 + a−2b
−2 + · · ·+ a−sb

−s

for some integer coe�cients ai and integers r and s.

Balanced ternary expansion: b = 3, ai ∈ {−1, 0, 1}

π ≈ 31 + 3−2 + 3−3 − 3−4 + 3−5 + 3−6 + 3−7 − 3−8 − 3−12

+ 3−14 + 3−15 − 3−16 + 3−17 + 3−18 + 3−20 − 3−21 + · · ·
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r−1 + · · ·+ a1b+ a0 + a−1b

−1 + a−2b
−2 + · · ·+ a−sb

−s

for some integer coe�cients ai and integers r and s.

Non-Adjacent Form (NAF) expansion: b = 2, ai ∈ {−1, 0, 1} and no

two consecutive coe�cients can both be non-zero

π ≈ 22 − 20 + 2−3 + 2−6 + 2−10 − 2−17 − 2−19 + 2−21 + 2−23

+ 2−25 + 2−29 + 2−33 + 2−37 − 2−39 − 2−41 + 2−43 + · · ·
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Base b encoding - part 1

For integer b, |b| > 1, and real θ we can approximate θ by

θ ≈ arbr + ar−1b
r−1 + · · ·+ a1b+ a0 + a−1b

−1 + a−2b
−2 + · · ·+ a−sb

−s

for some integer coe�cients ai and integers r and s.

w-NAF expansion for w ≥ 1: b = 2, |ai| ≤ 2w−1 either 0 or odd and

no w consecutive coe�cients can have more than one that non-zero

π ≈ 3 · 20 + 5 · 2−5 − 15 · 2−10 − 2−17 − 11 · 2−23 + 9 · 2−28

− 15 · 2−33 + 2−38 + 13 · 2−43 + 3 · 2−48 + 9 · 2−56 + · · ·

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding � Carl Bootland 4/18



Base b encoding - part 2

From the expression

θ ≈ arbr + ar−1b
r−1 + · · ·+ a1b+ a0 + a−1b

−1 + a−2b
−2 + · · ·+ a−sb

−s

one determines an encoding of θ by:

replacing b by the indeterminate X

reducing the ai modulo t into
(
− t

2 ,
t
2

]
reducing modulo X2k + 1

For encoding to be invertible we require:

the range of possible ai to be at most t

there can be at most 2k coe�cients:

r ≤ u and s ≤ ` where `+ u+ 1 = 2k
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Correct Decoding after Computation

Decoding is the inverse of encoding.

For correct decoding:

X-axis

Z-axisZ[X±1]-plane

X−`

Xu

d(t− 1)/2e

−b(t− 1)/2c

Stay in this Box!

If we know in advance what sorts of computations will be needed

this places conditions on t, ` and u and thus 2k.
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Constraints on t and 2k

The precise constraints on t and 2k depend on:

The complexity of the computations

The size and precision of the data and the

type of expansion used

Security and correctness requirements of the

underlying SHE scheme

Practicality of the scheme
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The Problem

Balanced ternary and NAF expansions do not make use of the whole

plaintext space:

X-axis

Z-axis (log2-scale)

balanced ternary and NAF

X-axis

Z-axis (log2-scale)

more optimal use of plaintext space

Can we �nd a new encoding scheme that uses the

plaintext space more e�ciently?
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients
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longer expansions

smaller coe�cients

Z-axis

X-axis

b = 10

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients

Z-axis

X-axis

b = 9

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients

Z-axis

X-axis

b = 8

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients

Z-axis

X-axis

b = 7

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients

Z-axis

X-axis

b = 6

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients

Z-axis

X-axis

b = 5

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients

Z-axis

X-axis

b = 4

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients

Z-axis

X-axis

b = 3

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Creating longer expansions

A smaller base b gives in general:

longer expansions

smaller coe�cients

Z-axis

X-axis

b = 2

Encoding of 7140.1249 using a simple greedy algorithm using base b
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Making the base even smaller

Idea: Use a non-integral base!

Also we would like:

the coe�cients to be as small as possible

the expansions to be sparse

a simple and e�cient encoding algorithm

This lead us to the idea of using a non-integral base non-adjacent

form with window size w or ...

w-NIBNAF
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w-NIBNAF

For a window size parameter w ≥ 1 we de�ne the base bw as the

unique positive real root of the polynomial

Fw(x) = xw+1 − xw − x− 1

To encode a real value θ with base bw to within precision ε:

1 If |θ| ≤ ε return 0

2 Find the closest signed power of bw to θ, say σbrw where r is

an integer and σ ∈ {±1}
3 Recursively �nd the encoding of θ − σbrw, say this is a(X)

4 Return σXr + a(X) as an encoding of θ
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Analysing the Coe�cient Growth

The size of the coe�cient modulus t depends on how

much the coe�cients grow during computation

Thus a good analysis of how the coe�cients grow is

required

What a�ects the coe�cient growth?

The size of the coe�cients in the original encodings

The length of the original encodings

The sparsity of the original encodings
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Analysing the Coe�cient Growth

For larger w's the expansions are longer but also sparser:
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w

0
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lo

g2
(#

co
ef

f)

non-zero coeff
coeff 0

Plot of log2(#coe�cients) against w averaged over 10 000 w-NIBNAF
encodings of random integers in

[
−240, 240

]
Overall the number of non-zero coe�cients decreases as w increases

Faster Homomorphic Function Evaluation Using Non-integral Base Encoding � Carl Bootland 13/18



Multiplication - A Theoretical Worst Case Bound

Bw(n, p) := max coe�cient that can appear after multiplying p encodings

where the encodings have at most n non-zero coe�cients

n ≈ (max encoding length)/w + 1

Bw(n, p) =

bbp(n−1)/2c/nc∑
k=0

(−1)k
(
p

k

)(
p− 1 + bp(n− 1)/2c − kn

p− 1

)

Bw(n, p) ≤
√

6

πp(n2 − 1)
np for n ≥ 2 and p > 21

1L. Mattner and B. Roos. Maximal probabilities of convolution powers of discrete uniform

distributions
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Multiplication - In practice

In practice the theoretical worst case analysis is very pessimistic:
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maximum absolute value of a coe�cient after multiplying 5 w-NIBNAF
encodings of random numbers in

[
−240, 240

]
against w
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Multiplication - Filling the plaintext space
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w = 2

log2 of the maximum absolute value of the coe�cient of xi seen in

10 000 products of 2, 3, 4, 5 and 6 2-NIBNAF encodings of random

numbers in
[
−240, 240

]
against i
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Multiplication - Filling the plaintext space
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Multiplication - Filling the plaintext space

0 500 1000 1500 2000 2500 3000 3500 4000
0

2

4

6

8

10

12
# mult= 4

w=2
w=100

log2 of the maximum absolute value of the coe�cient of xi in 10 000
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against i

Larger w give wider but �atter curves
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Practical Results
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during a privacy preserving forecasting algorithm for the electricity market

With t = 33 we are 13x faster!
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Take home messages

A new encoding technique called w-NIBNAF

Encodes real numbers for use with HE schemes

Uses smaller non-integral bases

Gives longer expansions

Much better use of the plaintext space

Use a smaller value of the coe�cient modulus t

Smaller ciphertexts and faster implementations

Thank you for listening!
Any questions?
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