

Wouter Castryck^{1,2}, Ilia Iliashenko¹, Frederik Vercauteren^{1,3}

¹ COSIC, KU Leuven ² Ghent University ³ Open Security Research

We revisit the paper

Provably weak instances of Ring-LWE

by Y. Elias, K. Lauter, E. Ozman, K. Stange, CRYPTO 2015

in which the authors

investigate if evaluation-at-1-attacks apply to Ring-LWE,

• Image: A image:

We revisit the paper

Provably weak instances of Ring-LWE

by Y. Elias, K. Lauter, E. Ozman, K. Stange, CRYPTO 2015

in which the authors

- investigate if evaluation-at-1-attacks apply to Ring-LWE,
- claim to have indeed found vulnerable instances.

We revisit the paper

Provably weak instances of Ring-LWE

by Y. Elias, K. Lauter, E. Ozman, K. Stange, CRYPTO 2015

in which the authors

- investigate if evaluation-at-1-attacks apply to Ring-LWE,
- claim to have indeed found vulnerable instances.
- Vulnerable meaning: leak partial information about the secret with non-negligible probability.

We revisit the paper

Provably weak instances of Ring-LWE

by Y. Elias, K. Lauter, E. Ozman, K. Stange, CRYPTO 2015

in which the authors

- investigate if evaluation-at-1-attacks apply to Ring-LWE,
- claim to have indeed found vulnerable instances.
- Vulnerable meaning: leak partial information about the secret with non-negligible probability.

However,

they did not set up Ring-LWE as described in [LPR].

We revisit the paper

Provably weak instances of Ring-LWE

by Y. Elias, K. Lauter, E. Ozman, K. Stange, CRYPTO 2015

in which the authors

- investigate if evaluation-at-1-attacks apply to Ring-LWE,
- claim to have indeed found vulnerable instances.
- Vulnerable meaning: leak partial information about the secret with non-negligible probability.

However,

- they did not set up Ring-LWE as described in [LPR].
- Their instantiation generates many noise-free equations

We revisit the paper

Provably weak instances of Ring-LWE

by Y. Elias, K. Lauter, E. Ozman, K. Stange, CRYPTO 2015

in which the authors

- investigate if evaluation-at-1-attacks apply to Ring-LWE,
- claim to have indeed found vulnerable instances.
- Vulnerable meaning: leak partial information about the secret with non-negligible probability.

However,

- they did not set up Ring-LWE as described in [LPR].
- Their instantiation generates many noise-free equations
- allowing to recover the entire secret with near certainty.

We revisit the paper

Provably weak instances of Ring-LWE

by Y. Elias, K. Lauter, E. Ozman, K. Stange, CRYPTO 2015

in which the authors

- investigate if evaluation-at-1-attacks apply to Ring-LWE,
- claim to have indeed found vulnerable instances.
- Vulnerable meaning: leak partial information about the secret with non-negligible probability.

However,

- they did not set up Ring-LWE as described in [LPR].
- Their instantiation generates many noise-free equations
- allowing to recover the entire secret with near certainty.

Currently no threat to Ring-LWE.

The LWE problem (O. Regev, '05): solve a linear system

$$egin{pmatrix} b_0 \ b_1 \ dots \ b_{n-1} \end{pmatrix} pprox egin{pmatrix} a_{10} & a_{11} & \dots & a_{1,n-1} \ a_{20} & a_{21} & \dots & a_{2,n-1} \ dots & dots & \ddots & dots \ a_{m0} & a_{m1} & \dots & a_{m,n-1} \end{pmatrix} \cdot egin{pmatrix} s_0 \ s_1 \ dots \ s_n \ dots \ s_{n-1} \end{pmatrix}$$

over a finite field \mathbb{F}_p for a secret $(s_0, s_1, \dots, s_{n-1}) \in \mathbb{F}_p^n$ where

< □→ < □→ < □→ = □

The LWE problem (O. Regev, '05): solve a linear system

$$egin{pmatrix} b_0 \ b_1 \ dots \ b_{n-1} \end{pmatrix} pprox egin{pmatrix} a_{10} & a_{11} & \dots & a_{1,n-1} \ a_{20} & a_{21} & \dots & a_{2,n-1} \ dots & dots & \ddots & dots \ a_{m0} & a_{m1} & \dots & a_{m,n-1} \end{pmatrix} \cdot egin{pmatrix} s_0 \ s_1 \ dots \ s_n \ dots \ s_{n-1} \end{pmatrix}$$

over a finite field \mathbb{F}_p for a secret $(s_0, s_1, \dots, s_{n-1}) \in \mathbb{F}_p^n$ where

each equation is perturbed by a "small" error, i.e.

$$b_i = a_{i0}s_0 + a_{i1}s_1 + \cdots + a_{i,n-1}s_{n-1} + e_i$$

The LWE problem (O. Regev, '05): solve a linear system

$$egin{pmatrix} b_0 \ b_1 \ dots \ b_{n-1} \end{pmatrix} pprox egin{pmatrix} a_{10} & a_{11} & \dots & a_{1,n-1} \ a_{20} & a_{21} & \dots & a_{2,n-1} \ dots & dots & \ddots & dots \ a_{m0} & a_{m1} & \dots & a_{m,n-1} \end{pmatrix} \cdot egin{pmatrix} s_0 \ s_1 \ dots \ s_n \ dots \ s_{n-1} \end{pmatrix}$$

over a finite field \mathbb{F}_p for a secret $(s_0, s_1, \dots, s_{n-1}) \in \mathbb{F}_p^n$ where

each equation is perturbed by a "small" error, i.e.

$$b_i = a_{i0}s_0 + a_{i1}s_1 + \cdots + a_{i,n-1}s_{n-1} + e_i$$

• the $a_{ij} \in \mathbb{F}_p$ are chosen uniformly randomly,

The LWE problem (O. Regev, '05): solve a linear system

$$egin{pmatrix} b_0 \ b_1 \ dots \ b_{n-1} \end{pmatrix} pprox egin{pmatrix} a_{10} & a_{11} & \dots & a_{1,n-1} \ a_{20} & a_{21} & \dots & a_{2,n-1} \ dots & dots & \ddots & dots \ a_{m0} & a_{m1} & \dots & a_{m,n-1} \end{pmatrix} \cdot egin{pmatrix} s_0 \ s_1 \ dots \ s_n \ dots \ s_{n-1} \end{pmatrix}$$

over a finite field \mathbb{F}_p for a secret $(s_0, s_1, \dots, s_{n-1}) \in \mathbb{F}_p^n$ where

each equation is perturbed by a "small" error, i.e.

$$b_i = a_{i0}s_0 + a_{i1}s_1 + \cdots + a_{i,n-1}s_{n-1} + e_i$$

• the $a_{ij} \in \mathbb{F}_p$ are chosen uniformly randomly,

• an adversary can ask for new equations (m > n).

< □→ < □→ < □→ □ □

The LWE problem (O. Regev, '05): solve a linear system

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = \begin{pmatrix} a_{10} & a_{11} & \dots & a_{1,n-1} \\ a_{20} & a_{21} & \dots & a_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m0} & a_{m1} & \dots & a_{m,n-1} \end{pmatrix} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

over a finite field \mathbb{F}_p for a secret $(s_0, s_1, \dots, s_{n-1}) \in \mathbb{F}_p^n$ where

each equation is perturbed by a "small" error, i.e.

$$b_i = a_{i0}s_0 + a_{i1}s_1 + \cdots + a_{i,n-1}s_{n-1} + e_i$$

• the $a_{ij} \in \mathbb{F}_p$ are chosen uniformly randomly,

• an adversary can ask for new equations (m > n).

< □→ < □→ < □→ - □

Features:

- hardness reduction from classical lattice problems,
- versatile building block for cryptography, enabling exciting applications (FHE, PQ crypto, ...)

Features:

- hardness reduction from classical lattice problems,
- versatile building block for cryptography, enabling exciting applications (FHE, PQ crypto, ...)

Drawback: key size.

To hide the secret one needs an entire linear system:

2. Ring-based LWE Solution:

Identify key space

for some monic deg *n* polynomial $f(x) \in \mathbb{Z}[x]$, by viewing

 $(s_0, s_1, \ldots, s_{n-1})$ as $s_0 + s_1 x + s_2 x^2 + \cdots + s_{n-1} x^{n-1}$.

2. Ring-based LWE Solution:

Identify key space

$$\mathbb{F}_{\rho}^{n}$$
 with $\frac{\mathbb{Z}[x]}{(\rho, f(x))}$

for some monic deg *n* polynomial $f(x) \in \mathbb{Z}[x]$, by viewing

 $(s_0, s_1, \ldots, s_{n-1})$ as $s_0 + s_1 x + s_2 x^2 + \cdots + s_{n-1} x^{n-1}$.

Use samples of the form

$$egin{pmatrix} b_0 \ b_1 \ dots \ b_{n-1} \end{pmatrix} pprox A_{\mathbf{a}} \cdot egin{pmatrix} s_0 \ s_1 \ dots \ s_{n-1} \end{pmatrix}$$

with A_a the matrix of multiplication by some random $\mathbf{a}(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

2. Ring-based LWE Solution:

Identify key space

$$\mathbb{F}_{p}^{n}$$
 with $\frac{\mathbb{Z}[x]}{(p, f(x))}$

for some monic deg *n* polynomial $f(x) \in \mathbb{Z}[x]$, by viewing

 $(s_0, s_1, \ldots, s_{n-1})$ as $s_0 + s_1 x + s_2 x^2 + \cdots + s_{n-1} x^{n-1}$.

Use samples of the form

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} \approx A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix}$$

with $A_{\mathbf{a}}$ the matrix of multiplication by some random $\mathbf{a}(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1}$.

Store a(x) rather than A_a: saves factor n.

2. Ring-based LWE

Example:

• if $f(x) = x^n - 1$, then A_a is the circulant matrix

(a_0)	<i>a</i> _{n-1}		a_2	a ₁	
a ₁	a_0		a_3	a_2	
a_2	a ₁		a_4	a_3	
:	÷	·	÷	÷	
a_{n-1}	<i>a</i> _{n-2}		a_1	a_0	

of which it suffices to store the first column.

12

2. Ring-based LWE

Example:

• if $f(x) = x^n - 1$, then A_a is the circulant matrix

(a_0)	<i>a</i> _{n-1}		a_2	a ₁	
a ₁	a_0		a_3	a_2	
a_2	a ₁		a_4	a_3	
÷	÷	·	÷	÷	
$\setminus a_{n-1}$	<i>a</i> _{n-2}		a_1	a_0	

of which it suffices to store the first column.

Bad example, because of ...

Potential threat:

Suppose
$$f(1) \equiv 0 \mod p$$
, then

$$\frac{\mathbb{Z}[x]}{(p,f(x))} \to \mathbb{F}_p: \mathbf{r}(x) \mapsto \mathbf{r}(1) = r_0 + r_1 + \cdots + r_{n-1},$$

is a well-defined ring homomorphism.

▲□ → ▲ □ → ▲ □ →

크

Potential threat:

Suppose
$$f(1) \equiv 0 \mod p$$
, then

$$\frac{\mathbb{Z}[\mathbf{x}]}{(\mathbf{p},f(\mathbf{x}))} \to \mathbb{F}_{\mathbf{p}}: \mathbf{r}(\mathbf{x}) \mapsto \mathbf{r}(1) = r_0 + r_1 + \cdots + r_{n-1},$$

is a well-defined ring homomorphism.

Our ring-based LWE samples

$$\mathbf{b}(x) = \mathbf{a}(x) \cdot \mathbf{s}(x) + \mathbf{e}(x)$$

evaluate to

$$\boldsymbol{b}(1) = \boldsymbol{a}(1) \cdot \boldsymbol{s}(1) + \boldsymbol{e}(1).$$

< 同 > < 回 > < 回 > <

크

Potential threat:

Suppose
$$f(1) \equiv 0 \mod p$$
, then

$$\frac{\mathbb{Z}[x]}{(p,f(x))} \to \mathbb{F}_p : \mathbf{r}(x) \mapsto \mathbf{r}(1) = r_0 + r_1 + \cdots + r_{n-1},$$

is a well-defined ring homomorphism.

Our ring-based LWE samples

$$\mathbf{b}(x) = \mathbf{a}(x) \cdot \mathbf{s}(x) + \mathbf{e}(x)$$

evaluate to

$$b(1) = a(1) \cdot s(1) + e(1).$$

▶ For each guess for $\mathbf{s}(1) \in \mathbb{F}_p$, analyze distribution of $\mathbf{e}(1)$.

A (1) < (2) < (3) </p>

Potential threat:

Suppose
$$f(1) \equiv 0 \mod p$$
, then

$$\frac{\mathbb{Z}[x]}{(p,f(x))} \to \mathbb{F}_p: \mathbf{r}(x) \mapsto \mathbf{r}(1) = r_0 + r_1 + \cdots + r_{n-1},$$

is a well-defined ring homomorphism.

Our ring-based LWE samples

$$\mathbf{b}(x) = \mathbf{a}(x) \cdot \mathbf{s}(x) + \mathbf{e}(x)$$

evaluate to

$$b(1) = a(1) \cdot s(1) + e(1).$$

- For each guess for $\mathbf{s}(1) \in \mathbb{F}_{p}$, analyze distribution of $\mathbf{e}(1)$.
- Non-uniformity might reveal s(1), and maybe more ...

A (1) < (2) < (3) </p>

Potential threat:

Suppose
$$f(1) \equiv 0 \mod p$$
, then

$$\frac{\mathbb{Z}[x]}{(\boldsymbol{\rho},f(x))} \to \mathbb{F}_{\boldsymbol{\rho}}: \mathbf{r}(x) \mapsto \mathbf{r}(1) = r_0 + r_1 + \cdots + r_{n-1},$$

is a well-defined ring homomorphism.

Our ring-based LWE samples

$$\mathbf{b}(x) = \mathbf{a}(x) \cdot \mathbf{s}(x) + \mathbf{e}(x)$$

evaluate to

$$\mathbf{b}(1) = \mathbf{a}(1) \cdot \mathbf{s}(1) + \mathbf{e}(1).$$

- ▶ For each guess for $\mathbf{s}(1) \in \mathbb{F}_{p}$, analyze distribution of $\mathbf{e}(1)$.
- Non-uniformity might reveal s(1), and maybe more ...

Safety measure: restrict to irreducible $f(x) \in \mathbb{Z}[x]$,

Direct ring-based analogue of LWE-sample would read

$$egin{pmatrix} b_0\ b_1\ dots\ b_{n-1}\end{pmatrix} = A_{\mathbf{a}} \cdot egin{pmatrix} s_0\ s_1\ dots\ s_{n-1}\end{pmatrix} + \ s_{n-1}\end{pmatrix}$$

with the e_i sampled independently from

for some fixed small $\sigma = \sigma(n)$.

Direct ring-based analogue of LWE-sample would read

$$egin{pmatrix} b_0\ b_1\ dots\ b_{n-1}\end{pmatrix} = eta_{\mathbf{a}} \cdot egin{pmatrix} s_0\ s_1\ dots\ s_{n-1}\end{pmatrix} + \ egin{pmatrix} b_{n-1}\end{pmatrix} + egin{pmatrix} b_{$$

with the e_i sampled independently from

 $N(0,\sigma)$

for some fixed small $\sigma = \sigma(n)$.

This is not Ring-LWE!

Direct ring-based analogue of LWE-sample would read

$$egin{pmatrix} b_0\ b_1\ dots\ b_{n-1}\end{pmatrix} = oldsymbol{A}_{oldsymbol{a}}\cdotegin{pmatrix} s_0\ s_1\ dots\ s_{n-1}\end{pmatrix} + \ egin{pmatrix} b_{n-1}\end{pmatrix}$$

with the e_i sampled independently from

for some fixed small $\sigma = \sigma(n)$.

This is not Ring-LWE!

- Not backed up by hardness statement.
 - Evaluation-at-1 known to work in special cases [ELS].

Direct ring-based analogue of LWE-sample would read

$$egin{pmatrix} b_0\ b_1\ dots\ b_{n-1}\end{pmatrix} = oldsymbol{A}_{f a} \cdot egin{pmatrix} s_0\ s_1\ dots\ s_{n-1}\end{pmatrix} + \ egin{pmatrix} b_{n-1}\end{pmatrix} \end{pmatrix}$$

with the e_i sampled independently from

for some fixed small $\sigma = \sigma(n)$.

This is not Ring-LWE!

- Not backed up by hardness statement.
 - Evaluation-at-1 known to work in special cases [ELS].
- Sometimes called Poly-LWE.

So what is Ring-LWE according to [LPR]? Samples look like

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + \qquad \qquad \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

크

So what is Ring-LWE according to [LPR]? Samples look like

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{f'(\mathbf{x})} \cdot B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

where

- B is the canonical embedding matrix,
- A_{f'(x)} compensates for the fact that one actually picks secrets from the dual.

A (1) < (2) < (3) < (4) < (4) </p>

So what is Ring-LWE according to [LPR]? Samples look like

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{f'(\mathbf{x})} \cdot B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

where

- B is the canonical embedding matrix,
- A_{f'(x)} compensates for the fact that one actually picks secrets from the dual.

Hardness reduction from ideal lattice problems.

So what is Ring-LWE according to [LPR]? Samples look like

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{f'(\mathbf{x})} \cdot B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

where

- B is the canonical embedding matrix,
- A_{f'(x)} compensates for the fact that one actually picks secrets from the dual.

Hardness reduction from ideal lattice problems.

Note:

• factor $A_{f'(x)} \cdot B^{-1}$ might skew the error distribution,

So what is Ring-LWE according to [LPR]? Samples look like

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{f'(\mathbf{x})} \cdot B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

where

- B is the canonical embedding matrix,
- A_{f'(x)} compensates for the fact that one actually picks secrets from the dual.

Hardness reduction from ideal lattice problems.

Note:

- factor $A_{f'(x)} \cdot B^{-1}$ might skew the error distribution,
- but also scales it!

... but also scales it!

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{f'(x)} \cdot B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

Indeed, one has

► det $A_{f'(x)} = \Delta$ with $\Delta = |\operatorname{disc} f(x)|, \quad \leftarrow \text{could be huge}$

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

... but also scales it!

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{f'(\mathbf{x})} \cdot B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

Indeed, one has

det A_{f'(x)} = ∆ with
∆ = |disc f(x)|, ← could be huge
det B⁻¹ = 1/√∆.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ ・ 三 ・ の Q ()

... but also scales it!

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{f'(x)} \cdot B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

Indeed, one has

• det $A_{f'(x)} = \Delta$ with $\Delta = |\operatorname{disc} f(x)|, \quad \leftarrow \text{could be huge}$

• det
$$B^{-1} = 1/\sqrt{\Delta}$$
.

So "on average", each e_i is scaled up by $\sqrt{\Delta}^{1/n} \dots$

[ELOS] constructed families of polynomials f(x) that are vulnerable to an evaluation-at-1 attack.

For convenience they picked non-dual secrets:

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{\frac{r(x)}{r(x)}} B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

[ELOS] constructed families of polynomials f(x) that are vulnerable to an evaluation-at-1 attack.

For convenience they picked non-dual secrets:

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + A_{\frac{r(x)}{r(x)}} B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

Recall:

• det $B^{-1} = 1/\sqrt{\Delta}$, so the errors get squeezed.

[ELOS] constructed families of polynomials f(x) that are vulnerable to an evaluation-at-1 attack.

For convenience they picked non-dual secrets:

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + \underline{A_{r(\mathbf{x})^*}} B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

Recall:

- det $B^{-1} = 1/\sqrt{\Delta}$, so the errors get squeezed.
- To compensate, they scale up the errors by a factor $\sqrt{\Delta}^{1/n}$.

[ELOS] constructed families of polynomials f(x) that are vulnerable to an evaluation-at-1 attack.

For convenience they picked non-dual secrets:

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + \sqrt{\Delta}^{1/n} B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

Recall:

- det $B^{-1} = 1/\sqrt{\Delta}$, so the errors get squeezed.
- To compensate, they scale up the errors by a factor $\sqrt{\Delta}^{1/n}$.

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + \sqrt{\Delta}^{1/n} B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

• The factor $\sqrt{\Delta}^{1/n}$ compensates for B^{-1} only "on average".

$$\begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_{n-1} \end{pmatrix} = A_{\mathbf{a}} \cdot \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{n-1} \end{pmatrix} + \sqrt{\Delta}^{1/n} B^{-1} \cdot \begin{pmatrix} e_0 \\ e_1 \\ \vdots \\ e_{n-1} \end{pmatrix}$$

• The factor $\sqrt{\Delta}^{1/n}$ compensates for B^{-1} only "on average".

► In some coordinates B^{-1} could scale down much more.

Compensation factor is insufficient ~ merely rounding yields exact equations in the secret!

All instances from [ELOS] suffer from this skewness.

- ▶ Example: $f(x) = x^{256} + 8190$, p = 8191. ← note: $f(1) \equiv 0 \mod p$
- Standard deviations even form a geometric series! Error distribution in each coordinate (experimental):

All instances from [ELOS] suffer from this skewness.

- ▶ Example: $f(x) = x^{256} + 8190$, p = 8191. ← note: $f(1) \equiv 0 \mod p$
- Standard deviations even form a geometric series! Error distribution in each coordinate (experimental):

Evaluation-at-1 allowed [ELOS] to recover s(1),

using about 20 samples with a success rate of 20%.

< □→ < □→ < □→ □ □

Evaluation-at-1 allowed [ELOS] to recover s(1),

using about 20 samples with a success rate of 20%.

But after rounding, the last $\approx n/7$ equations become exact,

▶ so 7 or 8 samples suffice to recover $\mathbf{s}(x)$ exactly.

Evaluation-at-1 allowed [ELOS] to recover s(1),

using about 20 samples with a success rate of 20%.

But after rounding, the last $\approx n/7$ equations become exact,

▶ so 7 or 8 samples suffice to recover $\mathbf{s}(x)$ exactly.

Similar remarks apply to the other instances from [ELOS].

▲□ ▶ ▲ □ ▶ ▲ □ ▶ - □ □

Concluding thoughts/remarks:

크

Concluding thoughts/remarks:

Currently, evaluation-at-1 is not a threat to Ring-LWE.

크

- Currently, evaluation-at-1 is not a threat to Ring-LWE.
- ▶ Both B⁻¹ and A_{f'(x)} · B⁻¹ can be very skew, so mostly a matter of insufficient scaling, rather than dual vs. non-dual.

- Currently, evaluation-at-1 is not a threat to Ring-LWE.
- ▶ Both B⁻¹ and A_{f'(x)} · B⁻¹ can be very skew, so mostly a matter of insufficient scaling, rather than dual vs. non-dual.
- To compensate for A_{f'(x)} a factor Δ^{1/n} makes more sense. Does scaling this way lead to a provably hard problem?

- Currently, evaluation-at-1 is not a threat to Ring-LWE.
- ▶ Both B⁻¹ and A_{f'(x)} · B⁻¹ can be very skew, so mostly a matter of insufficient scaling, rather than dual vs. non-dual.
- To compensate for A_{f'(x)} a factor Δ^{1/n} makes more sense. Does scaling this way lead to a provably hard problem?
- If one does scale the [ELOS] examples sufficiently, then the error coordinates of low index become uniform.

- Currently, evaluation-at-1 is not a threat to Ring-LWE.
- ▶ Both B⁻¹ and A_{f'(x)} · B⁻¹ can be very skew, so mostly a matter of insufficient scaling, rather than dual vs. non-dual.
- To compensate for A_{f'(x)} a factor Δ^{1/n} makes more sense. Does scaling this way lead to a provably hard problem?
- If one does scale the [ELOS] examples sufficiently, then the error coordinates of low index become uniform.
- The cyclotomic case seems naturally protected against geometric growth.