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Abstract
We revisit the paper

Provably weak instances of Ring-LWE
by Y. Elias, K. Lauter, E. Ozman, K. Stange, CRYPTO 2015

in which the authors
I investigate if evaluation-at-1-attacks apply to Ring-LWE,

I claim to have indeed found vulnerable instances.
I Vulnerable meaning: leak partial information about the

secret with non-negligible probability.

However,
I they did not set up Ring-LWE as described in [LPR].
I Their instantiation generates many noise-free equations
I allowing to recover the entire secret with near certainty.

Currently no threat to Ring-LWE.
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1. Learning With Errors (LWE)

The LWE problem (O. Regev, ‘05): solve a linear system
b0
b1
...

bn−1

 ≈


a10 a11 . . . a1,n−1
a20 a21 . . . a2,n−1

...
...

. . .
...

am0 am1 . . . am,n−1

 ·


s0
s1
...

sn−1


over a finite field Fp for a secret (s0, s1, . . . , sn−1) ∈ Fn

p where

I each equation is perturbed by a “small” error, i.e.

bi = ai0s0 + ai1s1 + · · ·+ ai,n−1sn−1 + ei ,

I the aij ∈ Fp are chosen uniformly randomly,

I an adversary can ask for new equations (m > n).
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1. Learning With Errors (LWE)

Features:
I hardness reduction from classical lattice problems,
I versatile building block for cryptography, enabling exciting

applications (FHE, PQ crypto, . . . )

Drawback: key size.
I To hide the secret one needs an entire linear system:

b0
b1
...

bn−1

 ≈


a10 a11 . . . a1,n−1
a20 a21 . . . a2,n−1

...
...

. . .
...

am0 am1 . . . am,n−1

 ·


s0
s1
...

sn−1

.
↑ ↑ ↑

n log p mn log p n log p
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2. Ring-based LWE
Solution:
I Identify key space

Fn
p with

Z[x ]

(p, f (x))

for some monic deg n polynomial f (x) ∈ Z[x ], by viewing

(s0, s1, . . . , sn−1) as s0 + s1x + s2x2 + · · ·+ sn−1xn−1.

I Use samples of the form
b0
b1
...

bn−1

 ≈ Aa·


s0
s1
...

sn−1


with Aa the matrix of
multiplication by some random
a(x) = a0 + a1x + · · ·+ an−1xn−1.

I Store a(x) rather than Aa: saves factor n.
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2. Ring-based LWE

Example:

I if f (x) = xn − 1, then Aa is the circulant matrix
a0 an−1 . . . a2 a1
a1 a0 . . . a3 a2
a2 a1 . . . a4 a3
...

...
. . .

...
...

an−1 an−2 . . . a1 a0


of which it suffices to store the first column.

I Bad example, because of . . .

EUROCRYPT, May 9, 2016 Provably weak instances of Ring-LWE revisited 6/15



2. Ring-based LWE

Example:

I if f (x) = xn − 1, then Aa is the circulant matrix
a0 an−1 . . . a2 a1
a1 a0 . . . a3 a2
a2 a1 . . . a4 a3
...

...
. . .

...
...

an−1 an−2 . . . a1 a0


of which it suffices to store the first column.

I Bad example, because of . . .

EUROCRYPT, May 9, 2016 Provably weak instances of Ring-LWE revisited 6/15



3. Evaluation-at-1 attack
Potential threat:

I Suppose f (1) ≡ 0 mod p, then

Z[x ]

(p, f (x))
→ Fp : r(x) 7→ r(1) = r0 + r1 + · · ·+ rn−1,

is a well-defined ring homomorphism.

I Our ring-based LWE samples

b(x) = a(x) · s(x) + e(x)

evaluate to
b(1) = a(1) · s(1) + e(1).

I For each guess for s(1) ∈ Fp, analyze distribution of e(1).
I Non-uniformity might reveal s(1), and maybe more . . .

Safety measure: restrict to irreducible f (x) ∈ Z[x ].
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4. Ring-LWE
Direct ring-based analogue of LWE-sample would read

b0
b1
...

bn−1

 = Aa ·


s0
s1
...

sn−1

 + Af ′(x) · B−1·


e0
e1
...

en−1


with the ei sampled independently from

N(0, σ)

for some fixed small σ = σ(n).

This is not Ring-LWE!
I Not backed up by hardness statement.

I Evaluation-at-1 known to work in special cases [ELS].
I Sometimes called Poly-LWE.
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4. Ring-LWE
So what is Ring-LWE according to [LPR]? Samples look like
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where
I B is the canonical embedding matrix,
I Af ′(x) compensates for the fact that one

actually picks secrets from the dual.

Hardness reduction from ideal lattice problems.

Note:
I factor Af ′(x) · B−1 might skew the error distribution,
I but also scales it!
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
Indeed, one has
I det Af ′(x) = ∆ with

∆ = |disc f (x)| , ← could be huge

I det B−1 = 1/
√

∆.

So “on average”, each ei is scaled up by
√

∆
1/n

. . .
I . . . but remember: skewness.
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5. Provably weak instances of Ring-LWE revisited

[ELOS] constructed families of polynomials f (x) that are
vulnerable to an evaluation-at-1 attack.

For convenience they picked non-dual secrets:
b0
b1
...

bn−1

 = Aa ·


s0
s1
...

sn−1

 + Af ′(x)· B−1 ·


e0
e1
...

en−1

 .

Recall:
I det B−1 = 1/

√
∆, so the errors get squeezed.

I To compensate, they scale up the errors by a factor
√

∆
1/n

.
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5. Provably weak instances of Ring-LWE revisited
Issue: 

b0
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...
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√

∆
1/n

B−1 ·


e0
e1
...

en−1

 .

I The factor
√

∆
1/n

compensates for B−1 only “on average”.

I In some coordinates B−1 could scale down much more.

Compensation factor is insufficient
 merely rounding yields exact equations in the secret!
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5. Provably weak instances of Ring-LWE revisited
All instances from [ELOS] suffer from this skewness.

I Example: f (x) = x256 + 8190, p = 8191. ← note: f (1) ≡ 0 mod p

I Standard deviations even form a geometric series!
Error distribution in each coordinate (experimental):
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5. Provably weak instances of Ring-LWE revisited

Evaluation-at-1 allowed [ELOS] to recover s(1),
I using about 20 samples with a success rate of 20%.

But after rounding, the last ≈ n/7 equations become exact,
I so 7 or 8 samples suffice to recover s(x) exactly.

Similar remarks apply to the other instances from [ELOS].
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5. Provably weak instances of Ring-LWE revisited

Concluding thoughts/remarks:

I Currently, evaluation-at-1 is not a threat to Ring-LWE.

I Both B−1 and Af ′(x) · B−1 can be very skew, so mostly a
matter of insufficient scaling, rather than dual vs. non-dual.

I To compensate for Af ′(x) a factor ∆1/n makes more sense.
Does scaling this way lead to a provably hard problem?

I If one does scale the [ELOS] examples sufficiently, then
the error coordinates of low index become uniform.

I The cyclotomic case seems naturally protected against
geometric growth.
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