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Typically a ring of the form 𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)

where 𝑡 ∈ 𝐙≥2 and 𝑓 𝑥 ∈ 𝐙[𝑥] is monic irreducible of degree 𝑑.

We represent this by a box:

Polynomials of degree < 𝑑
and coefficients in [0, 𝑡). 

Plaintext space

𝑎

𝑖

𝑎𝑥𝑖



How to encode
real-world input 𝜃? 

𝜃 ≈ 𝑎𝑟𝑏
𝑟 + 𝑎𝑟−1𝑏

𝑟−1 +⋯+ 𝑎1𝑏 + 𝑎0 for some base 𝑏 ∈ 𝐂.

Decoding: evaluate in 𝑥 = 𝑏. Works well if no overflow.

General principle: find an integer-digit expansion

Then encode as 𝑎𝑟𝑥
𝑟 + 𝑎𝑟−1𝑥

𝑟−1 +⋯+ 𝑎1𝑥 + 𝑎0.
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Encoding fractional expansions

𝜃 ≈ 𝑎𝑟𝑏
𝑟 +⋯+ 𝑎1𝑏 + 𝑎0 + 𝑎−1𝑏

−1 +⋯+ 𝑎−𝑠𝑏
−𝑠?

Works as long as high powers
and low powers do not overflow each other.

[Dowlin et al., ‘15] If 𝑓(𝑥) = 𝑥𝑑 + 1 then 𝑥−𝑖 ≡ −𝑥𝑑−𝑖 , so:
put fractional part at the high powers, with negated sign.
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Batch encoding is possible thanks to CRT [Smart-Vercauteren, ‘14]: 

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
՜
≅ 𝐙[𝑥]

(𝑓1 𝑥 , 𝑡)
×

𝐙[𝑥]

(𝑓2 𝑥 , 𝑡)
× ⋯×

𝐙 𝑥

𝑓𝑟 𝑥 , 𝑡

where the 𝑓𝑖(𝑥) are coprime factors of 𝑓 𝑥 modulo 𝑡.
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𝐶crypSIMD      i

Single Instruction, Multiple Data



 SIMD seems incompatible with fractional encoding, because
most factors of 𝑥𝑑 + 1 modulo 𝑡 are not of that form.

 The CRT allows for more fine-grained decompositions by also
incorporating factorizations of 𝑡.

We give a very general fractional encoding method

which does not require that 𝒇 𝒙 = 𝒙𝒅 + 𝟏.

We show that this enables more flexible and denser
data packing.

Contributions



Write 𝑓 𝑥 = 𝑥 ⋅ 𝑔 𝑥 + 𝑓 0 .

Fractional encoding revisited

First encode

as a Laurent polynomial in 𝐙[𝑥±1] by substituting 𝑥 for 𝑏.

𝑎𝑟𝑏
𝑟 +⋯+ 𝑎1𝑏 + 𝑎0 + 𝑎−1𝑏

−1 +⋯+ 𝑎−𝑠𝑏
−𝑠



𝑎𝑟𝑥
𝑟 +⋯+ 𝑎1𝑥 + 𝑎0 + 𝑎−1𝑥

−1 +⋯+ 𝑎−𝑠𝑥
−𝑠

Then apply:

𝐙 𝑥±1
mod 𝑡

𝐙𝑡 𝑥
±1

𝜂𝑓
𝑅𝑡 where 𝜂𝑓: ቊ

𝑥 ↦ 𝑥
𝑥−1 ↦ −𝑓 0 −1𝑔(𝑥)

Write 𝑓 𝑥 = 𝑥 ⋅ 𝑔 𝑥 + 𝑓 0 .

Fractional encoding revisited

First encode

as a Laurent polynomial in 𝐙[𝑥±1] by substituting 𝑥 for 𝑏.

mild requirement: 
𝒇(𝟎) invertible mod 𝒕
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Visually: looks like a mess,
seems to overflow from the start! 

Algebraically, much cleaner.

If 𝑚 − ℓ + 1 = 𝑑 then the restricted map 

is an isomorphism of free 𝐙𝑡-modules of rank 𝑑.

Decoding

𝑑-direction

𝑡-
d

ir
ec

ti
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n

𝐙𝑡 𝑥
±1

≥ℓ
≤𝑚

𝜂𝑓
𝑅𝑡



Suppose we know that the evaluation of 𝐶 when carried out in 
𝐙[𝑥±1] ends up in a certain box

ℓ
𝑚

h
ei

gh
t
𝑡

width 𝑚 − ℓ + 1 = 𝑑

Bounding box

𝐙 𝑥±1 ≥ℓ
≤𝑚

mod 𝑡
𝐙𝑡 𝑥

±1
≥ℓ
≤𝑚

𝜂𝑓
𝑅𝑡.

𝑥-axis

𝐙-axis

, and that some shifted plaintext
space covers this box.

Decoding = inverting



The CRT decomposition used in [Smart-Vercauteren, ‘14]

Decomposing plaintext space

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
՜
≅ 𝐙[𝑥]

(𝑓1 𝑥 , 𝑡)
×

𝐙[𝑥]

(𝑓2 𝑥 , 𝑡)
× ⋯×

𝐙 𝑥

𝑓𝑟 𝑥 , 𝑡

can be viewed as a vertical slicing of plaintext space:

Each individual slice should
cover the bounding box of 
the corresponding entry.



We generalize this discussion: suppose

Decomposing plaintext space

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
≅

𝑡 = 𝑡1𝑡2𝑡3⋯𝑡𝑠 𝑓 𝑥 =ෑ

𝑖=1

𝑟𝑖

𝑓𝑖𝑗(𝑥) mod 𝑡𝑖and

are factorizations into coprimes. Then:

𝐙 𝑥

𝑓 𝑥 , 𝑡1
×

×
𝐙 𝑥

𝑓 𝑥 , 𝑡𝑠

⋮



𝐙 𝑥

𝑓11 𝑥 , 𝑡1
×

𝐙 𝑥

𝑓12 𝑥 , 𝑡1
×⋯×

𝐙 𝑥

𝑓1𝑟1 𝑥 , 𝑡1
×

×
𝐙 𝑥

𝑓𝑠1 𝑥 , 𝑡𝑠
×

𝐙 𝑥

𝑓𝑠2 𝑥 , 𝑡𝑠
×⋯×

𝐙 𝑥

𝑓𝑠𝑟𝑠 𝑥 , 𝑡𝑠

⋮

We generalize this discussion: suppose

Decomposing plaintext space

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
≅

𝑡 = 𝑡1𝑡2𝑡3⋯𝑡𝑠 𝑓 𝑥 =ෑ

𝑖=1

𝑟𝑖

𝑓𝑖𝑗(𝑥) mod 𝑡𝑖and

are factorizations into coprimes. Then:



Decomposing plaintext space

𝑡1

𝑡2

𝑡3

𝑡4
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Blocks

What if a computation does not fit into one of these bricks?

Distribute computation over 
enough horizontal slices.

In each horizontal slice, select 
enough factors 𝑓𝑖𝑗(𝑥).

Gives rise to notion of block: 

ራ

𝑖∈𝐼

ራ

𝑗∈𝐽𝑖

𝑡𝑖 , 𝑓𝑖𝑗 𝑥



Toolkit for optimal packing

Choose good 𝑡 for given circuit 𝐶 and dataset, taking into account:

 lower bounds coming from correct decoding,

 upper bound coming from correct decryption,

 splitting behaviour: 
similar-sized 𝑡’s give very different brick structures.



Toolkit for optimal packing

Choose set of blocks
that make the best fit 
for the computation.
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Toolkit for optimal packing

Choose appropriate encoding base 𝑏, can be specific to block.

Smaller base gives wider but lower encodings.



Thank you!

Questions?


