
Homomorphic SIM2D operations:
Single Instruction Much More Data

Wouter Castryck
Ilia Iliashenko

Frederik Vercauteren

𝐶 𝐶cryp

§ç{à#£*°|175.2

Homomorphic encryption

𝐶

175.2 2𝑥1023 + 𝑥2 + 7𝑥 + 5

𝐶

§ç{à#£*°|

𝐶cryp

real-world data plaintext ciphertext

Homomorphic encoding

𝑑-direction
𝑡-

d
ir

ec
ti

o
n

Typically a ring of the form 𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)

where 𝑡 ∈ 𝐙≥2 and 𝑓 𝑥 ∈ 𝐙[𝑥] is monic irreducible of degree 𝑑.

We represent this by a box:

Polynomials of degree < 𝑑
and coefficients in [0, 𝑡).

Plaintext space

𝑎

𝑖

𝑎𝑥𝑖

How to encode
real-world input 𝜃?

𝜃 ≈ 𝑎𝑟𝑏
𝑟 + 𝑎𝑟−1𝑏

𝑟−1 +⋯+ 𝑎1𝑏 + 𝑎0 for some base 𝑏 ∈ 𝐂.

Decoding: evaluate in 𝑥 = 𝑏. Works well if no overflow.

General principle: find an integer-digit expansion

Then encode as 𝑎𝑟𝑥
𝑟 + 𝑎𝑟−1𝑥

𝑟−1 +⋯+ 𝑎1𝑥 + 𝑎0.

𝑑-direction

𝑡-
d

ir
ec

ti
o

n

Homomorphic encoding

General principle: find an integer-digit expansion

Then encode as 𝑎𝑟𝑥
𝑟 + 𝑎𝑟−1𝑥

𝑟−1 +⋯+ 𝑎1𝑥 + 𝑎0.

How to encode
real-world input 𝜃?

𝜃 ≈ 𝑎𝑟𝑏
𝑟 + 𝑎𝑟−1𝑏

𝑟−1 +⋯+ 𝑎1𝑏 + 𝑎0 for some base 𝑏 ∈ 𝐂.

Decoding: evaluate in 𝑥 = 𝑏. Works well if no overflow.

𝑑-direction

𝑡-
d

ir
ec

ti
o

n

𝜽 = 𝟐𝟔 + 𝟐𝟒 + 𝟐𝟑 + 𝟐 + 𝟏

Homomorphic encoding

General principle: find an integer-digit expansion

Then encode as 𝑎𝑟𝑥
𝑟 + 𝑎𝑟−1𝑥

𝑟−1 +⋯+ 𝑎1𝑥 + 𝑎0.

How to encode
real-world input 𝜃?

𝜃 ≈ 𝑎𝑟𝑏
𝑟 + 𝑎𝑟−1𝑏

𝑟−1 +⋯+ 𝑎1𝑏 + 𝑎0 for some base 𝑏 ∈ 𝐂.

Decoding: evaluate in 𝑥 = 𝑏. Works well if no overflow.

𝑑-direction

𝑡-
d

ir
ec

ti
o

n

𝜽 = 𝟐𝟔 + 𝟐𝟒 + 𝟐𝟑 + 𝟐 + 𝟏

Homomorphic encoding

General principle: find an integer-digit expansion

Then encode as 𝑎𝑟𝑥
𝑟 + 𝑎𝑟−1𝑥

𝑟−1 +⋯+ 𝑎1𝑥 + 𝑎0.

How to encode
real-world input 𝜃?

𝜃 ≈ 𝑎𝑟𝑏
𝑟 + 𝑎𝑟−1𝑏

𝑟−1 +⋯+ 𝑎1𝑏 + 𝑎0 for some base 𝑏 ∈ 𝐂.

Decoding: evaluate in 𝑥 = 𝑏. Works well if no overflow.

𝑑-direction

𝑡-
d

ir
ec

ti
o

n

𝜽 = 𝟐𝟔 + 𝟐𝟒 + 𝟐𝟑 + 𝟐 + 𝟏

Homomorphic encoding

General principle: find an integer-digit expansion

Then encode as 𝑎𝑟𝑥
𝑟 + 𝑎𝑟−1𝑥

𝑟−1 +⋯+ 𝑎1𝑥 + 𝑎0.

How to encode
real-world input 𝜃?

𝜃 ≈ 𝑎𝑟𝑏
𝑟 + 𝑎𝑟−1𝑏

𝑟−1 +⋯+ 𝑎1𝑏 + 𝑎0 for some base 𝑏 ∈ 𝐂.

Decoding: evaluate in 𝑥 = 𝑏. Works well if no overflow.

𝑑-direction

𝑡-
d

ir
ec

ti
o

n

𝜽 = 𝟐𝟔 + 𝟐𝟒 + 𝟐𝟑 + 𝟐 + 𝟏

Homomorphic encoding

Encoding fractional expansions

𝜃 ≈ 𝑎𝑟𝑏
𝑟 +⋯+ 𝑎1𝑏 + 𝑎0 + 𝑎−1𝑏

−1 +⋯+ 𝑎−𝑠𝑏
−𝑠?

Works as long as high powers
and low powers do not overflow each other.

[Dowlin et al., ‘15] If 𝑓(𝑥) = 𝑥𝑑 + 1 then 𝑥−𝑖 ≡ −𝑥𝑑−𝑖 , so:
put fractional part at the high powers, with negated sign.

𝑑-direction
𝑡-

d
ir

ec
ti

o
n

𝜽 = 𝟐𝟔 + 𝟐𝟒 + 𝟐𝟑 +
𝟐 + 𝟏 + 𝟐−𝟏 + 𝟐−𝟑

Fractional encoding

Encoding fractional expansions

𝜃 ≈ 𝑎𝑟𝑏
𝑟 +⋯+ 𝑎1𝑏 + 𝑎0 + 𝑎−1𝑏

−1 +⋯+ 𝑎−𝑠𝑏
−𝑠?

Works as long as high powers
and low powers do not overflow each other.

[Dowlin et al., ‘15] If 𝑓(𝑥) = 𝑥𝑑 + 1 then 𝑥−𝑖 ≡ −𝑥𝑑−𝑖 , so:
put fractional part at the high powers, with negated sign.

𝑑-direction
𝑡-

d
ir

ec
ti

o
n

𝜽 = 𝟐𝟔 + 𝟐𝟒 + 𝟐𝟑 +
𝟐 + 𝟏 + 𝟐−𝟏 + 𝟐−𝟑

Fractional encoding

Encoding fractional expansions

𝜃 ≈ 𝑎𝑟𝑏
𝑟 +⋯+ 𝑎1𝑏 + 𝑎0 + 𝑎−1𝑏

−1 +⋯+ 𝑎−𝑠𝑏
−𝑠?

Works as long as high powers
and low powers do not overflow each other.

[Dowlin et al., ‘15] If 𝑓(𝑥) = 𝑥𝑑 + 1 then 𝑥−𝑖 ≡ −𝑥𝑑−𝑖 , so:
put fractional part at the high powers, with negated sign.

𝑑-direction
𝑡-

d
ir

ec
ti

o
n

𝜽 = 𝟐𝟔 + 𝟐𝟒 + 𝟐𝟑 +
𝟐 + 𝟏 + 𝟐−𝟏 + 𝟐−𝟑

Fractional encoding

SIMD

SIMD

SIMD

Batch encoding is possible thanks to CRT [Smart-Vercauteren, ‘14]:

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
՜
≅ 𝐙[𝑥]

(𝑓1 𝑥 , 𝑡)
×

𝐙[𝑥]

(𝑓2 𝑥 , 𝑡)
× ⋯×

𝐙 𝑥

𝑓𝑟 𝑥 , 𝑡

where the 𝑓𝑖(𝑥) are coprime factors of 𝑓 𝑥 modulo 𝑡.

SIMD

Batch encoding is possible thanks to CRT [Smart-Vercauteren, ‘14]:

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
՜
≅ 𝐙[𝑥]

(𝑓1 𝑥 , 𝑡)
×

𝐙[𝑥]

(𝑓2 𝑥 , 𝑡)
× ⋯×

𝐙 𝑥

𝑓𝑟 𝑥 , 𝑡

where the 𝑓𝑖(𝑥) are coprime factors of 𝑓 𝑥 modulo 𝑡.

SIMD

Batch encoding is possible thanks to CRT [Smart-Vercauteren, ‘14]:

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
՜
≅ 𝐙[𝑥]

(𝑓1 𝑥 , 𝑡)
×

𝐙[𝑥]

(𝑓2 𝑥 , 𝑡)
× ⋯×

𝐙 𝑥

𝑓𝑟 𝑥 , 𝑡

where the 𝑓𝑖(𝑥) are coprime factors of 𝑓 𝑥 modulo 𝑡.

SIMD

Batch encoding is possible thanks to CRT [Smart-Vercauteren, ‘14]:

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
՜
≅ 𝐙[𝑥]

(𝑓1 𝑥 , 𝑡)
×

𝐙[𝑥]

(𝑓2 𝑥 , 𝑡)
× ⋯×

𝐙 𝑥

𝑓𝑟 𝑥 , 𝑡

where the 𝑓𝑖(𝑥) are coprime factors of 𝑓 𝑥 modulo 𝑡.

SIMD

Batch encoding is possible thanks to CRT [Smart-Vercauteren, ‘14]:

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
՜
≅ 𝐙[𝑥]

(𝑓1 𝑥 , 𝑡)
×

𝐙[𝑥]

(𝑓2 𝑥 , 𝑡)
× ⋯×

𝐙 𝑥

𝑓𝑟 𝑥 , 𝑡

where the 𝑓𝑖(𝑥) are coprime factors of 𝑓 𝑥 modulo 𝑡.

SIMD
𝐶crypSIMD i

Single Instruction, Multiple Data

 SIMD seems incompatible with fractional encoding, because
most factors of 𝑥𝑑 + 1 modulo 𝑡 are not of that form.

 The CRT allows for more fine-grained decompositions by also
incorporating factorizations of 𝑡.

We give a very general fractional encoding method

which does not require that 𝒇 𝒙 = 𝒙𝒅 + 𝟏.

We show that this enables more flexible and denser
data packing.

Contributions

Write 𝑓 𝑥 = 𝑥 ⋅ 𝑔 𝑥 + 𝑓 0 .

Fractional encoding revisited

First encode

as a Laurent polynomial in 𝐙[𝑥±1] by substituting 𝑥 for 𝑏.

𝑎𝑟𝑏
𝑟 +⋯+ 𝑎1𝑏 + 𝑎0 + 𝑎−1𝑏

−1 +⋯+ 𝑎−𝑠𝑏
−𝑠

𝑎𝑟𝑥
𝑟 +⋯+ 𝑎1𝑥 + 𝑎0 + 𝑎−1𝑥

−1 +⋯+ 𝑎−𝑠𝑥
−𝑠

Then apply:

𝐙 𝑥±1
mod 𝑡

𝐙𝑡 𝑥
±1

𝜂𝑓
𝑅𝑡 where 𝜂𝑓: ቊ

𝑥 ↦ 𝑥
𝑥−1 ↦ −𝑓 0 −1𝑔(𝑥)

Write 𝑓 𝑥 = 𝑥 ⋅ 𝑔 𝑥 + 𝑓 0 .

Fractional encoding revisited

First encode

as a Laurent polynomial in 𝐙[𝑥±1] by substituting 𝑥 for 𝑏.

mild requirement:
𝒇(𝟎) invertible mod 𝒕

Visually: looks like a mess,
seems to overflow from the start!

Decoding

𝑑-direction

𝑡-
d

ir
ec

ti
o

n

Visually: looks like a mess,
seems to overflow from the start!

Decoding

𝑑-direction

𝑡-
d

ir
ec

ti
o

n

Visually: looks like a mess,
seems to overflow from the start!

Algebraically, much cleaner.

If 𝑚 − ℓ + 1 = 𝑑 then the restricted map

is an isomorphism of free 𝐙𝑡-modules of rank 𝑑.

Decoding

𝑑-direction

𝑡-
d

ir
ec

ti
o

n

𝐙𝑡 𝑥
±1

≥ℓ
≤𝑚

𝜂𝑓
𝑅𝑡

Suppose we know that the evaluation of 𝐶 when carried out in
𝐙[𝑥±1] ends up in a certain box

ℓ
𝑚

h
ei

gh
t
𝑡

width 𝑚 − ℓ + 1 = 𝑑

Bounding box

𝐙 𝑥±1 ≥ℓ
≤𝑚

mod 𝑡
𝐙𝑡 𝑥

±1
≥ℓ
≤𝑚

𝜂𝑓
𝑅𝑡.

𝑥-axis

𝐙-axis

, and that some shifted plaintext
space covers this box.

Decoding = inverting

The CRT decomposition used in [Smart-Vercauteren, ‘14]

Decomposing plaintext space

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
՜
≅ 𝐙[𝑥]

(𝑓1 𝑥 , 𝑡)
×

𝐙[𝑥]

(𝑓2 𝑥 , 𝑡)
× ⋯×

𝐙 𝑥

𝑓𝑟 𝑥 , 𝑡

can be viewed as a vertical slicing of plaintext space:

Each individual slice should
cover the bounding box of
the corresponding entry.

We generalize this discussion: suppose

Decomposing plaintext space

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
≅

𝑡 = 𝑡1𝑡2𝑡3⋯𝑡𝑠 𝑓 𝑥 =ෑ

𝑖=1

𝑟𝑖

𝑓𝑖𝑗(𝑥) mod 𝑡𝑖and

are factorizations into coprimes. Then:

𝐙 𝑥

𝑓 𝑥 , 𝑡1
×

×
𝐙 𝑥

𝑓 𝑥 , 𝑡𝑠

⋮

𝐙 𝑥

𝑓11 𝑥 , 𝑡1
×

𝐙 𝑥

𝑓12 𝑥 , 𝑡1
×⋯×

𝐙 𝑥

𝑓1𝑟1 𝑥 , 𝑡1
×

×
𝐙 𝑥

𝑓𝑠1 𝑥 , 𝑡𝑠
×

𝐙 𝑥

𝑓𝑠2 𝑥 , 𝑡𝑠
×⋯×

𝐙 𝑥

𝑓𝑠𝑟𝑠 𝑥 , 𝑡𝑠

⋮

We generalize this discussion: suppose

Decomposing plaintext space

𝑅𝑡 =
𝐙[𝑥]

(𝑓 𝑥 , 𝑡)
≅

𝑡 = 𝑡1𝑡2𝑡3⋯𝑡𝑠 𝑓 𝑥 =ෑ

𝑖=1

𝑟𝑖

𝑓𝑖𝑗(𝑥) mod 𝑡𝑖and

are factorizations into coprimes. Then:

Decomposing plaintext space

𝑡1

𝑡2

𝑡3

𝑡4

Blocks

What if a computation does not fit into one of these bricks?

Blocks

What if a computation does not fit into one of these bricks?

Distribute computation over
enough horizontal slices.

Blocks

What if a computation does not fit into one of these bricks?

Distribute computation over
enough horizontal slices.

In each horizontal slice, select
enough factors 𝑓𝑖𝑗(𝑥).

Gives rise to notion of block:

ራ

𝑖∈𝐼

ራ

𝑗∈𝐽𝑖

𝑡𝑖 , 𝑓𝑖𝑗 𝑥

Toolkit for optimal packing

Choose good 𝑡 for given circuit 𝐶 and dataset, taking into account:

 lower bounds coming from correct decoding,

 upper bound coming from correct decryption,

 splitting behaviour:
similar-sized 𝑡’s give very different brick structures.

Toolkit for optimal packing

Choose set of blocks
that make the best fit
for the computation.

Toolkit for optimal packing

Choose appropriate encoding base 𝑏, can be specific to block.

Toolkit for optimal packing

Choose appropriate encoding base 𝑏, can be specific to block.

Toolkit for optimal packing

Choose appropriate encoding base 𝑏, can be specific to block.

Smaller base gives wider but lower encodings.

Thank you!

Questions?

